Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
EXCLI J ; 23: 180-197, 2024.
Article in English | MEDLINE | ID: mdl-38487082

ABSTRACT

Drug-induced kidney injury (DIKI) is a cause of drug development failure. Dogs represent a common non-rodent animal model in pre-clinical safety studies; however, biomarker assays for detecting nephrotoxicity in dogs are limited. To identify novel proteins and gain insight into the molecular mechanisms involved in DIKI, we developed an assay to evaluate proteomic changes associated with DIKI in male beagle dogs that received nephrotoxic doses of tobramycin for 10 consecutive days. Label-free quantitative discovery proteomics analysis on representative kidney cortex tissues collected on Day 11 showed that the tobramycin-induced kidney injury led to a significant differential regulation of 94 proteins mostly associated with mechanisms of nephrotoxicity such as oxidative stress and proteasome degradation. For verification of the proteomic results, we developed a multiplex peptide-centric immunoaffinity liquid chromatography tandem mass spectrometry assay (IA LC-MS/MS) to evaluate the association of eight DIKI protein biomarker candidates using kidney cortices collected on Day 11 and urine samples collected on Days -4, 1, 3, 7 and 10. The results showed that most biomarkers evaluated were detected in the kidney cortices and their expression profile in tissue aligned with the label-free data. Cystatin C was the most consistent marker regardless of the magnitude of the renal injury while fatty acid-binding protein-4 (FABP4) and kidney injury molecule-1 (KIM-1) were the most affected biomarkers in response to moderate proximal tubular injury in absence of changes in serum-based concentrations of blood urea nitrogen or creatinine. In the urine, clusterin is considered the most consistent biomarker regardless of the magnitude and time of the renal injury. To our knowledge, this is the most comprehensive multiplex assay for the quantitative analysis of mechanism-based proximal tubular injury biomarkers in dogs.

2.
Diagn Progn Res ; 7(1): 18, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37697410

ABSTRACT

A lack of biomarkers that detect drug-induced liver injury (DILI) accurately continues to hinder early- and late-stage drug development and remains a challenge in clinical practice. The Innovative Medicines Initiative's TransBioLine consortium comprising academic and industry partners is developing a prospective repository of deeply phenotyped cases and controls with biological samples during liver injury progression to facilitate biomarker discovery, evaluation, validation and qualification.In a nested case-control design, patients who meet one of these criteria, alanine transaminase (ALT) ≥ 5 × the upper limit of normal (ULN), alkaline phosphatase ≥ 2 × ULN or ALT ≥ 3 ULN with total bilirubin > 2 × ULN, are enrolled. After completed clinical investigations, Roussel Uclaf Causality Assessment and expert panel review are used to adjudicate episodes as DILI or alternative liver diseases (acute non-DILI controls). Two blood samples are taken: at recruitment and follow-up. Sample size is as follows: 300 cases of DILI and 130 acute non-DILI controls. Additional cross-sectional cohorts (1 visit) are as follows: Healthy volunteers (n = 120), controls with chronic alcohol-related or non-alcoholic fatty liver disease (n = 100 each) and patients with psoriasis or rheumatoid arthritis (n = 100, 50 treated with methotrexate) are enrolled. Candidate biomarkers prioritised for evaluation include osteopontin, glutamate dehydrogenase, cytokeratin-18 (full length and caspase cleaved), macrophage-colony-stimulating factor 1 receptor and high mobility group protein B1 as well as bile acids, sphingolipids and microRNAs. The TransBioLine project is enabling biomarker discovery and validation that could improve detection, diagnostic accuracy and prognostication of DILI in premarketing clinical trials and for clinical healthcare application.

3.
Environ Int ; 178: 108082, 2023 08.
Article in English | MEDLINE | ID: mdl-37422975

ABSTRACT

The predominantly animal-centric approach of chemical safety assessment has increasingly come under pressure. Society is questioning overall performance, sustainability, continued relevance for human health risk assessment and ethics of this system, demanding a change of paradigm. At the same time, the scientific toolbox used for risk assessment is continuously enriched by the development of "New Approach Methodologies" (NAMs). While this term does not define the age or the state of readiness of the innovation, it covers a wide range of methods, including quantitative structure-activity relationship (QSAR) predictions, high-throughput screening (HTS) bioassays, omics applications, cell cultures, organoids, microphysiological systems (MPS), machine learning models and artificial intelligence (AI). In addition to promising faster and more efficient toxicity testing, NAMs have the potential to fundamentally transform today's regulatory work by allowing more human-relevant decision-making in terms of both hazard and exposure assessment. Yet, several obstacles hamper a broader application of NAMs in current regulatory risk assessment. Constraints in addressing repeated-dose toxicity, with particular reference to the chronic toxicity, and hesitance from relevant stakeholders, are major challenges for the implementation of NAMs in a broader context. Moreover, issues regarding predictivity, reproducibility and quantification need to be addressed and regulatory and legislative frameworks need to be adapted to NAMs. The conceptual perspective presented here has its focus on hazard assessment and is grounded on the main findings and conclusions from a symposium and workshop held in Berlin in November 2021. It intends to provide further insights into how NAMs can be gradually integrated into chemical risk assessment aimed at protection of human health, until eventually the current paradigm is replaced by an animal-free "Next Generation Risk Assessment" (NGRA).


Subject(s)
Artificial Intelligence , Toxicity Tests , Humans , Reproducibility of Results , Toxicity Tests/methods , Risk Assessment/methods
4.
Cells ; 12(5)2023 02 28.
Article in English | MEDLINE | ID: mdl-36899906

ABSTRACT

Okadaic acid (OA) is a marine biotoxin that is produced by algae and accumulates in filter-feeding shellfish, through which it enters the human food chain, leading to diarrheic shellfish poisoning (DSP) after ingestion. Furthermore, additional effects of OA have been observed, such as cytotoxicity. Additionally, a strong downregulation of the expression of xenobiotic-metabolizing enzymes in the liver can be observed. The underlying mechanisms of this, however, remain to be examined. In this study, we investigated a possible underlying mechanism of the downregulation of cytochrome P450 (CYP) enzymes and the nuclear receptors pregnane X receptor (PXR) and retinoid-X-receptor alpha (RXRα) by OA through NF-κB and subsequent JAK/STAT activation in human HepaRG hepatocarcinoma cells. Our data suggest an activation of NF-κB signaling and subsequent expression and release of interleukins, which then activate JAK-dependent signaling and thus STAT3. Moreover, using the NF-κB inhibitors JSH-23 and Methysticin and the JAK inhibitors Decernotinib and Tofacitinib, we were also able to demonstrate a connection between OA-induced NF-κB and JAK signaling and the downregulation of CYP enzymes. Overall, we provide clear evidence that the effect of OA on the expression of CYP enzymes in HepaRG cells is regulated through NF-κB and subsequent JAK signaling.


Subject(s)
Liver Neoplasms , NF-kappa B , Humans , Cytochrome P-450 Enzyme System/metabolism , NF-kappa B/metabolism , Okadaic Acid , Signal Transduction , Xenobiotics , Janus Kinases/drug effects , STAT Transcription Factors/drug effects
5.
Arch Toxicol ; 97(3): 769-785, 2023 03.
Article in English | MEDLINE | ID: mdl-36481916

ABSTRACT

Drug-induced pancreatic injury (DIPI) is an issue seen in drug development both in nonclinical and clinical contexts. DIPI is typically monitored by measurement of lipase and/or amylase, however, both enzymes lack sensitivity and specificity. Although candidate protein biomarkers specific to pancreas exist, antibody-based assay development is difficult due to their small size or the rapid cleavage by proteolytic enzymes released during pancreatic injury. Here we report the development of a novel multiplexed immunoaffinity-based liquid chromatography mass spectrometric assay (IA-LC-MS/MS) for trypsinogen activation peptide (TAP) and carboxypeptidases A1 and A2 (CPA1, CPA2). This method is based on the enzymatic digestion of the target proteins, immunoprecipitation of the peptides with specific antibodies and LC-MS/MS analysis. This assay was used to detect TAP, CPA1, and CPA2 in 470 plasma samples collected from 9 in-vivo rat studies with pancreatic injury and 8 specificity studies with injury in other organs to assess their performance in monitoring exocrine pancreas injury. The TAP, CPA1, and CPA2 response was compared to histopathology, lipase, amylase and microRNA217. In summary, TAP, CPA1, and CPA2 proteins measured in rat plasma were sensitive and specific biomarkers for monitoring drug-induced pancreatic injury; outperforming lipase and amylase both by higher sensitivity of detection and by sustained increases in plasma observed over a longer time period. These protein-based assays and potentially others under development, are valuable tools for use in nonclinical drug development and as future translatable biomarkers for assessment in clinical settings to further improve patient safety.


Subject(s)
Amylases , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Carboxypeptidases A/metabolism , Biomarkers , Lipase
6.
Arch Toxicol ; 96(10): 2739-2754, 2022 10.
Article in English | MEDLINE | ID: mdl-35881160

ABSTRACT

Activation of the constitutive androstane receptor (CAR) may induce adaptive but also adverse effects in rodent liver, including the induction of drug-metabolizing enzymes, transient hepatocellular proliferation, and promotion of liver tumor growth. Human relevance of CAR-related adverse hepatic effects is controversially debated. Here, we used the chimeric FRG-KO mouse model with livers largely repopulated by human hepatocytes, in order to study human hepatocytes and their response to treatment with the model CAR activator phenobarbital (PB) in vivo. Mice received an intraperitoneal injection with 50 mg/kg body weight PB or saline, and were sacrificed after 72-144 h. Non-repopulated FRG-KO mice were used as additional control. Comprehensive proteomics datasets were generated by merging data obtained by targeted as well as non-targeted proteomics approaches. For the first time, a novel proteomics workflow was established to comparatively analyze the effects of PB on human and murine proteins within one sample. Analysis of merged proteome data sets and bioinformatics data mining revealed comparable responses in murine and human hepatocytes with respect to nuclear receptor activation and induction of xenobiotic metabolism. By contrast, activation of MYC, a key regulator of proliferation, was predicted only for mouse but not human hepatocytes. Analyses of 5-bromo-2'-deoxyuridine incorporation confirmed this finding. In summary, this study for the first time presents a comprehensive proteomic analysis of CAR-dependent effects in human and mouse hepatocytes from humanized FRG-KO mice. The data support the hypothesis that PB does induce adaptive metabolic responses, but not hepatocellular proliferation in human hepatocytes in vivo.


Subject(s)
Phenobarbital , Proteomics , Animals , Constitutive Androstane Receptor , Hepatocytes , Humans , Liver , Mice , Mice, Inbred Strains , Phenobarbital/toxicity
7.
J Proteome Res ; 20(11): 4985-4994, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34554759

ABSTRACT

Macrophage colony stimulating factor 1 receptor (MCSF1R), osteopontin (OPN), high-mobility group protein B1 (HMGB1), glutamate dehydrogenase (GLDH), keratin 18 (K18), and caspase-cleaved keratin 18 (ccK18) are considered promising mechanistic biomarkers for the diagnosis of drug-induced liver injury. Here, we aim to elucidate the impact of the sample matrix and handling on the quantification of these emerging protein biomarkers. We investigated effects such as time from collection to centrifugation during serum (± gel) or EDTA plasma preparation on two assay platforms: immunoaffinity liquid chromatography mass spectrometric assays and sandwich immunoassays. Furthermore, we measured GLDH activity with an enzymatic activity assay. Matrix effects were observed particularly for HMGB1 and MCSF1R. HMGB1 levels were higher in serum than in plasma, whereas higher concentrations of MCSF1R were observed in plasma than in serum. A comparison of sample collection to centrifugation time ranging from 15 to 60 min demonstrated increasing levels of HMGB1 in serum, while MCSF1R, OPN, GLDH, and ccK18 concentrations remained stable. Additionally, there was a poor correlation in HMGB1 and ccK18 levels between serum and plasma. Considering the observed matrix effects, we recommend plasma as a matrix of choice and cross-study comparison studies to be limited to those using the same matrix.


Subject(s)
Chemical and Drug Induced Liver Injury , Biomarkers , Chemical and Drug Induced Liver Injury/diagnosis , Glutamate Dehydrogenase , HMGB1 Protein , Humans , Keratin-18 , Osteopontin , Proteins , Receptor, Macrophage Colony-Stimulating Factor , Specimen Handling
8.
Toxicology ; 460: 152892, 2021 08.
Article in English | MEDLINE | ID: mdl-34371104

ABSTRACT

While real-life exposure occurs to complex chemical mixtures, toxicological risk assessment mostly focuses on individual compounds. There is an increasing demand for in vitro tools and strategies for mixture toxicity analysis. Based on a previously established set of hepatotoxicity marker genes, we analyzed mixture effects of non-cytotoxic concentrations of different pesticides in exposure-relevant binary mixtures in human HepaRG hepatocarcinoma cells using targeted transcriptomics. An approach for mixture analysis at the level of a complex endpoint such as a transcript pattern is presented, including mixture design based on relative transcriptomic potencies and similarities. From a mechanistic point of view, goal of the study was to evaluate combinations of chemicals with varying degrees of similarity in order to determine whether differences in mechanisms of action lead to different mixtures effects. Using a model deviation ratio-based approach for assessing mixture effects, it was revealed that most data points are consistent with the assumption of dose addition. A tendency for synergistic effects was only observed at high concentrations of some combinations of the test compounds azoxystrobin, cyproconazole, difenoconazole, propiconazole and thiacloprid, which may not be representative of human real-life exposure. In summary, the findings of our study suggest that, for the pesticide mixtures investigated, risk assessment based on the general assumption of dose addition can be considered sufficiently protective for consumers. The way of data analysis presented in this paper can pave the way for a more comprehensive use of multi-gene expression data in experimental studies related to mixture toxicity.


Subject(s)
Gene Expression Profiling/methods , Pesticides/toxicity , Transcriptome/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Transcriptome/physiology
9.
Bioconjug Chem ; 32(9): 1960-1965, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34406760

ABSTRACT

N-Hydroxysuccinimide esters of small molecules are widely used to modify biomolecules such as antibodies or proteins. Primary amine groups preferably react with the ester to form covalent amide bonds. Currently, protocols strongly recommend replacing the buffer reagent tris(hydroxymethyl)aminomethane, and it has even been proposed as a stop reagent. Here, we show that TRIS indeed does not interfere with biotinylation of biomolecules with NHS chemistry.


Subject(s)
Succinimides , Biotinylation , Tromethamine
10.
Anal Chem ; 93(31): 10816-10824, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34324311

ABSTRACT

The tumor suppressor PTEN is the main negative regulator of PI3K/AKT/mTOR signaling and is commonly found downregulated in breast cancer (BC). Conflicting data from conventional immunoassays such as immunohistochemistry (IHC) has sparked controversy about PTEN's role as a prognostic and predictive biomarker in BC, which can be largely attributed to the lack of specificity, sensitivity, and interlaboratory standardization. Here, we present a fully standardized, highly sensitive, robust microflow immuno-MRM (iMRM) assay that enables precise quantitation of PTEN concentrations in cells and fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) tissues, down to 0.1 fmol/10 µg of extracted protein, with high interday and intraday precision (CV 6.3%). PTEN protein levels in BC PDX samples that were determined by iMRM correlate well with semiquantitative IHC and WB data. iMRM, however, allowed the precise quantitation of PTEN-even in samples that were deemed to be PTEN negative by IHC or western blot (WB)-while requiring substantially less tumor tissue than WB. This is particularly relevant because the extent of PTEN downregulation in tumors has been shown to correlate with severity. Our standardized and robust workflow includes an 11 min microflow LC-MRM analysis on a triple-quadrupole MS and thus provides a much needed tool for the study of PTEN as a potential biomarker for BC.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Breast Neoplasms/diagnosis , Female , Humans , Immunohistochemistry , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases
11.
Clin Transplant ; 35(9): e14408, 2021 09.
Article in English | MEDLINE | ID: mdl-34196434

ABSTRACT

AIM: Urinary and blood kidney biomarkers (BM) remain insufficient for early kidney injury detection. We aimed to compare new kidney BM with histopathological data in kidney allograft recipients. METHODS: Blood and urine samples were collected from consecutive adult patients just before graft biopsy. All kidney samples were classified according to the Banff 2007 classification. The diagnostic performance of 16 new BM was compared to those of urinary proteins, blood urea nitrogen, eGFR, and serum creatinine to identify histopathological groups. RESULTS: Two hundred and twenty-three patients were analyzed. Microalbuminuria and urinary proteins performed well to discriminate glomerular injury from slightly modified renal parenchyma (SMRP). Urinary neutrophil gelatinase-associated lipocalin (NGAL) had the best performance relative to SMRP (AUROC .93) for acute tubular necrosis (ATN) diagnosis. Other BM had a slightly lower AUROC (.89). For the comparison of ATN to acute rejection, several new urinary BM (NGAL, cystatin C, MCP1) and classical BM (eGFR, serum creatinine) gave similar AUROC values (from .80 to .85). Urinary NGAL values in patients with ATN were 10-time higher than those with acute rejection (P=.0004). CONCLUSION: The new BM did not outperform classical BM in the context of renal transplantation. Urinary NGAL may be useful for distinguishing between ATN and acute rejection.


Subject(s)
Acute Kidney Injury , Kidney Transplantation , Adult , Biomarkers , Biopsy , Glomerular Filtration Rate , Humans , Kidney , Kidney Transplantation/adverse effects , Lipocalin-2
12.
Methods Mol Biol ; 2261: 277-289, 2021.
Article in English | MEDLINE | ID: mdl-33420996

ABSTRACT

Targeted protein quantification can be challenging in body fluids such as plasma with regard to sensitivity and selectivity. In this chapter, we present a protocol for the quantification of high mobility group box 1 protein (HMGB1) in plasma using an immunoaffinity liquid chromatography mass spectrometric assay (IA-LC-MSMS). The protocol provides detailed assay instructions involving sample proteolysis, peptide-targeted immunoprecipitation, and LC-MSMS-based read out.


Subject(s)
Analytic Sample Preparation Methods , Blood Specimen Collection , Chromatography, Affinity , Edetic Acid/pharmacology , HMGB1 Protein/blood , Proteomics , Tandem Mass Spectrometry , Anticoagulants/pharmacology , Humans , Immunoprecipitation , Proteolysis
13.
Anal Chem ; 92(18): 12407-12414, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32786432

ABSTRACT

Mass spectrometry (MS), particularly targeted proteomics, is increasingly being used for quantifying specific proteins and peptides in clinical specimens. The coupling of immuno-enrichment of proteotypic peptides with MS [e.g., immuno-multiple reaction monitoring (MRM) and immuno-matrix-assisted laser desorption ionization (MALDI)] enables the development of highly sensitive and specific assays for low-abundance signaling proteins. By incorporating stable isotope-labeled standards, these workflows allow the determination of endogenous protein concentrations. This is typically achieved through external calibration, often using surrogate matrices, which has inherent limitations for the analysis of clinical specimens as there are often substantial variations in the sample matrix, and sample amounts are typically limited. We have previously introduced the use of two peptide isotopologues for generating external calibration curves in plasma. Here, we present a two-point internal calibration (2-PIC) strategy using two isotopologues for immuno-MS assays and demonstrate its flexibility and robustness. Quantification of the tumor suppressor PTEN in Colo-205 cells by immuno-MRM and immuno-MALDI using 2-PIC and external calibration yielded very similar results (relative standard deviation between 2-PIC and external calibration: 4.9% for immuno-MRM; 1.1% for immuno-MALDI), without the need for a surrogate matrix or additional patient material for calibration, while concurrently reducing the instrument time and cost. Although our PTEN immuno-MRM and immuno-MALDI assays can be considered to be orthogonal as they utilized entirely different sample preparation and MS analysis workflows, targeted different PTEN peptides, and were performed in different laboratories, the endogenous Colo-205 PTEN levels determined with 2-PIC showed a good correlation (r2 = 0.9966) and good agreement (0.48 ± 0.01 and 0.29 ± 0.02 fmol/µg of total protein) between immuno-MRM and immuno-MALDI.


Subject(s)
Colonic Neoplasms/diagnosis , Enzyme-Linked Immunosorbent Assay , Peptides/chemistry , Proteins/analysis , Calibration , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay/standards , Humans , Isotope Labeling , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/standards
14.
Food Chem Toxicol ; 145: 111690, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32810590

ABSTRACT

Non-alcoholic fatty liver disease is a major health concern especially in Western countries. Animal studies suggest that certain chemicals may contribute to hepatocellular triglyceride accumulation, among them a number of hepatotoxic pesticidal active compounds. In order to improve the identification of potential liver steatosis inducers in vitro in a human cell culture system, HepaRG cells were treated with a selection of 30 steatotic or non-steatotic pesticides. Induction of triglyceride accumulation was monitored, and changes in the expression of hepatotoxicity marker genes were measured at the mRNA and protein levels. Based on these data, transcript and protein marker signatures predictive of triglyceride accumulation in HepaRG cells were derived. The predictive transcript set consisted of POR, ANXA10, ARG1, CCL20, FASN, INSIG1, SREBF1, CD36, CYP2D6, and SLCO1B1. The predictive protein set consisted of NCPR (POR), CYP2E1, CYP1A1, ALDH3A1, UGT2B7, UGT2B15, S100P, LMNA, and PRKDC. In conclusion, the present study presents for the first time transcript and protein marker patterns to separate steatotic from non-steatotic compounds in a human liver cell line.


Subject(s)
Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Biomarkers/metabolism , Cell Line , Hepatocytes/metabolism , Humans , Transcription, Genetic , Triglycerides/metabolism
15.
Proteomics Clin Appl ; 14(5): e2000034, 2020 09.
Article in English | MEDLINE | ID: mdl-32643306

ABSTRACT

PURPOSE: Immuno-MALDI (iMALDI) combines immuno-enrichment of biomarkers with MALDI-MS for fast, precise, and specific quantitation, making it a valuable tool for developing clinical assays. iMALDI assays are optimized for the PI3-kinase signaling pathway members phosphatase and tensin homolog (PTEN) and PI3-kinase catalytic subunit alpha (p110α), with regard to sensitivity, robustness, and throughput. A standardized template for developing future iMALDI assays, including automation protocols to streamline assay development and translation, is provided. EXPERIMENTAL DESIGN: Conditions for tryptic digestion and immuno-enrichment (beads, bead:antibody ratios, incubation times, direct vs. indirect immuno-enrichment) are rigorously tested. Different strategies for calibration and data readout are compared. RESULTS: Digestion using 1:2 protein:trypsin (wt:wt) for 1 h yielded high and consistent peptide recoveries. Direct immuno-enrichment (antibody-bead coupling prior to antigen-enrichment) yielded 30% higher peptide recovery with a 1 h shorter incubation time than indirect enrichment. Immuno-enrichment incubation overnight yielded 1.5-fold higher sensitivities than 1 h incubation. Quantitation of the endogenous target proteins is not affected by the complexity of the calibration matrix, further simplifying the workflow. CONCLUSIONS AND CLINICAL RELEVANCE: This optimized and automated workflow will facilitate the clinical translation of high-throughput sensitive iMALDI assays for quantifying cell-signaling proteins in individual tumor samples, thereby improving patient stratification for targeted treatment.


Subject(s)
Neoplasm Proteins/metabolism , Signal Transduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Workflow , Cell Line, Tumor , Humans , Limit of Detection , Time Factors
16.
Clin Pharmacol Ther ; 108(3): 671-680, 2020 09.
Article in English | MEDLINE | ID: mdl-32275773

ABSTRACT

Paclitaxel-induced peripheral neuropathy (PIPN) is a common and dose-limiting adverse event. The role of P-glycoprotein (P-gp) in the neuronal efflux of paclitaxel was assessed using a translational approach. SH-SY5Y cells were differentiated to neurons and paclitaxel toxicity in the absence and presence of a P-gp inhibitor was determined. Paclitaxel caused marked dose-dependent toxicity in SH-SY5Y-derived neurons. Paclitaxel neurotoxicity was exacerbated with concomitant P-gp inhibition by valspodar and verapamil, consistent with increased intracellular accumulation of paclitaxel. Patients with cancer treated with paclitaxel and P-gp inhibitors had a 2.4-fold (95% confidence interval (CI) 1.3-4.3) increased risk of peripheral neuropathy-induced dose modification while a 4.7-fold (95% CI 1.9-11.9) increased risk for patients treated with strong P-gp inhibitors was observed, and a 7.0-fold (95% CI 2.3-21.5) increased risk in patients treated with atorvastatin. Atorvastatin also increased neurotoxicity by paclitaxel in SH-SY5Y-derived neurons. Clinicians should be aware that comedication with P-gp inhibitors may lead to increased risk of PIPN.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Neurons/drug effects , Paclitaxel/adverse effects , Peripheral Nervous System Diseases/chemically induced , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents, Phytogenic/metabolism , Atorvastatin/adverse effects , Cell Line, Tumor , Cyclosporins/adverse effects , Dose-Response Relationship, Drug , Drug Interactions , Humans , Neurons/metabolism , Neurons/pathology , Paclitaxel/metabolism , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/pathology , Retrospective Studies , Risk Assessment , Risk Factors , Simvastatin/adverse effects , Verapamil/adverse effects
17.
EXCLI J ; 19: 135-153, 2020.
Article in English | MEDLINE | ID: mdl-32194361

ABSTRACT

The liver is a main target organ for the toxicity of many different compounds. While in general, in vivo testing is still routinely used for assessing the hepatotoxic potential of test chemicals, the use of in vitro models offers advantages with regard to throughput, consumption of resources, and animal welfare aspects. Using the human hepatoma cell line HepaRG, we performed a comparative evaluation of a panel of hepatotoxicity marker mRNAs and proteins after exposure of the cells to 30 different pesticidal active compounds comprising herbizides, fungicides, insecticides, and others. The panel of hepatotoxicity markers included nuclear receptor target genes, key players of fatty acid and bile acid metabolism-related pathways, as well as recently identified biomarkers of drug-induced liver injury. Moreover, marker genes and proteins were identified, for example, S100P, ANXA10, CYP1A1, and CYP7A1. These markers respond with high sensitivity to stimulation with chemically diverse test compounds already at non-cytotoxic concentrations. The potency of the test compounds, determined as an overall parameter of their ability to deregulate marker expression in vitro, was very similar between the mRNA and protein levels. Thus, this study does not only characterize the response of human liver cells to 30 different pesticides but also demonstrates that hepatotoxicity testing in human HepaRG cells yields well comparable results at the mRNA and protein levels. Furthermore, robust hepatotoxicity marker genes and proteins were identified in HepaRG cells.

18.
Int J Mol Sci ; 22(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396476

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants produced by incomplete combustion of organic matter. They induce their own metabolism by upregulating xenobiotic-metabolizing enzymes such as cytochrome P450 monooxygenase 1A1 (CYP1A1) by activating the aryl hydrocarbon receptor (AHR). However, previous studies showed that individual PAHs may also interact with the constitutive androstane receptor (CAR). Here, we studied ten PAHs, different in carcinogenicity classification, for their potential to activate AHR- and CAR-dependent luciferase reporter genes in human liver cells. The majority of investigated PAHs activated AHR, while non-carcinogenic PAHs tended to activate CAR. We further characterized gene expression, protein abundancies and activities of the AHR targets CYP1A1 and 1A2, and the CAR target CYP2B6 in human HepaRG hepatoma cells. Enzyme induction patterns strongly resembled the profiles obtained at the receptor level, with AHR-activating PAHs inducing CYP1A1/1A2 and CAR-activating PAHs inducing CYP2B6. In summary, this study provides evidence that beside well-known activation of AHR, some PAHs also activate CAR, followed by subsequent expression of respective target genes. Furthermore, we found that an increased PAH ring number is associated with AHR activation as well as the induction of DNA double-strand breaks, whereas smaller PAHs activated CAR but showed no DNA-damaging potential.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Hepatocellular/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/metabolism , Polycyclic Aromatic Hydrocarbons/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Xenobiotics/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Constitutive Androstane Receptor , Cytochrome P-450 Enzyme System/metabolism , Enzyme Induction , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Transcriptional Activation
19.
Arch Toxicol ; 93(7): 1927-1939, 2019 07.
Article in English | MEDLINE | ID: mdl-31115591

ABSTRACT

The lipophilic phycotoxin okadaic acid (OA) occurs in the fatty tissue and hepatopancreas of filter-feeding shellfish. The compound provokes the diarrhetic shellfish poisoning (DSP) syndrome after intake of seafood contaminated with high levels of the DSP toxin. In animal experiments, long-term exposure to OA is associated with an elevated risk for tumor formation in different organs including the liver. Although OA is a known inhibitor of the serine/threonine protein phosphatase 2A, the mechanisms behind OA-induced carcinogenesis are not fully understood. Here, we investigated the influence of OA on the ß-catenin-dependent Wnt-signaling pathway, addressing a major oncogenic pathway relevant for tumor development. We analyzed OA-mediated effects on ß-catenin and its biological function, cellular localization, post-translational modifications, and target gene expression in human HepaRG hepatocarcinoma cells treated with non-cytotoxic concentrations up to 50 nM. We detected concentration- and time-dependent effects of OA on the phosphorylation state, cellular redistribution as well as on the amount of transcriptionally active ß-catenin. These findings were confirmed by quantitative live-cell imaging of U2OS cells stably expressing a green fluorescent chromobody which specifically recognize hypophosphorylated ß-catenin. Finally, we demonstrated that nuclear translocation of ß-catenin mediated by non-cytotoxic OA concentrations results in an upregulation of Wnt-target genes. In conclusion, our results show a significant induction of the canonical Wnt/ß-catenin-signaling pathway by OA in human liver cells. Our data contribute to a better understanding of the molecular mechanisms underlying OA-induced carcinogenesis.


Subject(s)
Carcinogens/toxicity , Okadaic Acid/toxicity , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Carcinogens/administration & dosage , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Liver Neoplasms/metabolism , Okadaic Acid/administration & dosage , Phosphorylation/drug effects , Time Factors , Up-Regulation/drug effects , Wnt Signaling Pathway/genetics , beta Catenin/genetics
20.
Anal Chem ; 91(6): 3902-3911, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30768891

ABSTRACT

Processed Animal Proteins (PAPs) are considered as a sustainable protein source to improve the nutritional profile of feed for livestock and aquaculture. However, the use of these proteins is strongly regulated since the bovine spongiform encephalopathy (BSE) crisis. The reintroduction of nonruminant PAPs for use in aquaculture in 2013 has driven the need for alternative analytical methods to determine the species origin as well as the tissue source (legal or not). The current official methods, light microscopy and polymerase chain reaction, do not fulfill these requirements. Furthermore, future methods need to be quantitative, because the pending zero-tolerance-concept is planned to be replaced by accurate thresholds. Here, we developed a 7-plex mass spectrometry-based immunoassay that is capable of quantifying 0.1% (w/w) ruminant PAP in feed in a tissue- and species-specific way. The workflow comprises a 2 h tryptic digestion of PAPs in suspension, an immunoaffinity enrichment of peptides, and LC-MS/MS-based quantification. In combination with a previously published assay for species identification, we were able to confirm the species and tissue origin of six ring trial samples obtained in former PCR and microscopy proficiency tests. The sensitive, quantitative, species- and tissue-specific character of the developed assays meets the requirements for new methods for PAP detection and can be used in future feed authentication studies.


Subject(s)
Animal Feed/analysis , Dietary Proteins/analysis , Food Handling/legislation & jurisprudence , Immunoassay/methods , Mass Spectrometry , Animals , Cattle , Meat/analysis , Organ Specificity , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...